
8 The Delphi Magazine Issue 24

Under Construction:
Delphi 3 Web Modules, Part 1
by Bob Swart

This month, we’ll explore a new
feature included only with the

Client/Server version of Delphi 3:
web modules. If you don’t have the
Client/Server version, this article
may help you decide whether to
purchase it!

Web modules come with a
number of new components (found
on the Internet tab of the Compo-
nent Palette) and a new Wizard for
starting a Web Module project
(which can be found in the
Repository after a File|New).

If we select the Web Server Appli-
cation option the Wizard asks
which type of Web Server applica-
tion we’d like to build (Figure 1).
ISAPI/NSAPI DLLs have the com-
mon advantage that these pro-
cesses on the Web Server typically
only have to be loaded once and
can remain resident after the first
load, so they eliminate the time-
intensive loading/unloading we get
when using CGI and WinCGI web
applications. However, since the
internal logic isn’t much different
(certainly not for the Delphi 3 web
module programmer), I decided to
build a WinCGI web application
this time, so we can use the Intra-
Bob CGI Debugger version 2.01
(available on my new website at
www.drbob42.com) to test it on
our local machine without the
need for a local web server.

Web server applications extend
the functionality and capability of
existing web servers. The applica-
tion receives HTTP request mes-
sages from the web server,
performs any actions requested in
those messages and formulates re-
sponses that it passes back to the
web server. Any operation we can
perform with a (non-visual) Delphi
application can be incorporated
into a web server application.

Table 1 shows the four types of
web server applications and the

corresponding objects. Each type
of application uses a type-specific
descendant of TWebApplication,
TWebRequest and TWebResponse.

For an ISAPI or NSAPI application
client request information is
passed to the DLL as a structure
and evaluated by TISAPIApplica-
tion, which creates the dispatcher,
TISAPIRequest and TISAPIResponse
objects.

A CGI standalone application is a
console application that receives
client request information on stan-
dard input and passes the results
back to the server on standard out-
put. This data is evaluated by
TCGIApplication, which creates the
dispatcher, TCGIRequest and
TCGIResponse objects.

A Win-CGI standalone applica-
tion is a Windows application that
receives client request informa-
tion from a configuration settings
(INI) file written by the server and
writes the results to a file that the
server passes back to the client.
The INI file is evaluated by TCGI-
Application, which creates the
dispatcher, TWinCGIRequest and
TWinCGIResponse objects.

WinCGI
After we click OK in the Web Mod-
ule Wizard, we get a new project
with a new empty web module (in-
stead of the regular empty new

form). A web module is just like a
new form, however, since it’s
auto-created in the same way as a
regular form. The main project
source file contains code to prove
that (Listing 1).

Note that this WinCGI project
uses the HTTPApp and CGIApp units,
whilst an ISAPI/NSAPI project gen-
erated this way will use the HTTPApp
and ISAPIApp units. The {$APPTYPE
GUI} further specifies that it’s a
WinCGI application, as opposed
to a standard CGI application
that specifies {$APPTYPE CONSOLE}.
Of course, in both cases the

Application Type Application Object Request Object Response Object

Microsoft Server
DLL (ISAPI)

TISAPIApplication TISAPIRequest TISAPIResponse

Netscape Server
DLL (NSAPI)

TISAPIApplication TISAPIRequest TISAPIResponse

Console CGI
Application

TCGIApplication TCGIRequest TCGIResponse

Windows CGI
Application

TCGIApplication TWinCGIRequest TWinCGIResponse

➤ Table 1: Web application types

➤ Figure 1

program Project1;
{$APPTYPE GUI}
uses
HTTPApp, CGIApp,
Unit1 in ‘Unit1.pas’ {WebModule1:

TWebModule};
{$R *.RES}
begin
Application.Initialize;
Application.CreateForm(
TWebModule1, WebModule1);

Application.Run;
end.

➤ Listing 1



10 The Delphi Magazine Issue 24

application is non-visual, but the
CGIApp unit uses the APPTYPE com-
piler option to distinguish between
standard CGI and WinCGI applica-
tions. But they offer a quick way to
change a WinCGI application to a
standard CGI application or vice-
versa. We can even switch to an
NSAPI/ISAPI application, by using
the ISAPIApp unit instead of CGIApp.
Other than that, the different
internet protocols are practically
invisible to the Delphi developer,
so just pick the protocol you like
most and join the rest of the article
(you’ll need to read the manual for
tips on how to debug ISAPI/NSAPI
applications).

A web module is actually more
like a data module, in that we can
only drop non-visual components
on it. While we’d put data access
components on data modules, for
web modules we can also drop
components from the Internet tab
(Figure 2), but not the visual
NetManage ActiveX controls of
course.

Specifically, we can use one or
more of the following new compo-
nents (from left to right, skipping
the first two components and
the last eight from NetManage):

TWebDispatcher
TPageProducer
TQueryTableProducer
TDataSetTableProducer

TWebDispatcher
This component is already built
into the web module, but we need
one if we want to use an existing
data module as a web module. We
can’t drop a TWebDispatcher com-
ponent into a web module as there
should be only one per module. As
you would expect, this component
is the “dispatcher” of actions and
events.

The property Actions of type
TWebActionItems contains a list of
all actions that this web applica-
tion can perform. Each action has a
number of subproperties: Name,
PathInfo, Enabled and Default.

The PathInfo is the action re-
quest that is sent to the web server
and can be used to identify sub-
tasks to be performed by this sin-
gle web application (so we can

actually merge several web actions
into one web application, instead
of having to write a separate web
application for each action).

If we click the Add button, the
first action item will be created,
named WebModule1.Actions[0] of
type TWebActionItem, but with an
alias of WebActionItem1 (Figure 3). I
say alias because there’s some-
thing going on behind the scenes
here: the Object Inspector will use
the WebModule1.Actions[0] name in
the component combobox, while
the actual name of the component
will be WebActionItem1. The form
definition in the code editor con-
tains no reference to a WebAc-
tionItem component, so it should
be clear by now that we’re dealing
with a sub-component of the web
module, namely Actions[0], that
for our convenience is named
WebActionItem1.

Since it’s the only WebAction
item, it’ll be the default one as well.
To actually write code for this first

WebAction item, we have to select
the WebActionItem1 in the Web
Actions property editor, which will
make the Object Inspector focus
on WebModule.Actions[0] as well.
Then, go to the events page, dou-
ble click on the event OnAction and
write the code shown in Listing 2.

In this OnAction event handler,
we can fill in the Response of our We-
bAction, which usually generates a
dynamic HTML file. Response is of
type TWebResponse, which is an
abstract base class for all objects
that represent HTTP messages
sent in response to an HTTP
request message.

Our web application automati-
cally creates a TWebResponse object
based on the TWebRequest object
for an incoming HTTP request
message. The TWebDispatcher for
the application then passes the
TWebResponse object to the TWeb-
ActionItem associated with the
TWebRequest object, so that the re-
sponse can be formulated. Of the

➤ Figure 2

➤ Figure 3

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := ‘<HTML><BODY>Hello, world</BODY></HTML>’;

end;

➤ Listing 2



12 The Delphi Magazine Issue 24

many properties of the TWebRe-
sponse, the Content (of type String)
is the most important: here we can
assign whatever value we need to
return (eg a dynamic HTML page).

Normally, we would also need to
specify the format of the dynami-
cally generated output, like
content-type: text/html, but this
can be specified in another prop-
erty of TWebResponse, namely Con-
tentType, which has the value
text/html by default. In our first
Hello, world web application, we’ve
only defined the dynamic HTML
output page, to consist of a single
line that should display Hello,
world.

IntraBob v2.0
Since we’ve already written one
line of code, let’s see if we can get
some immediate feedback and test
our Delphi 3 WinCGI web applica-
tion. A few issues back, we wrote
IntraBob (the latest version 2.0 is
available on my website at
www.drbob42.com and is compati-
ble with Delphi 2.01, C++Builder
and Delphi 3), a CGI and WinCGI
testing application. We can use
that to test our project. For this, we
need an HTML CGI test form,
defined as follows:

<HTML>
<BODY>
<FORM ACTION="project1.exe"

METHOD="POST">
<INPUT TYPE=SUBMIT>
</FORM>
</BODY>
</FORM>

If you know HTML you will notice
immediately that this form will
send no actual data to the web ap-
plication, since there is no input
type other than the Submit button
available. That won’t be a problem,
however (or at least, it shouldn’t
be!). Loading this HTML form in In-
traBob, we only need to specify in
the CGI Options page that we’re
dealing with a WinCGI application
(so the options will be written to
project1.ini, which will be given as
a command line argument to pro-
ject1.exe). If we click on the Submit
button, however, we don’t get the
expected result. Instead, an

exception dialog pops up, showing
exception EFOpenEror.

Apart from the reason why we
get this exception dialog, it proves
once again the value of the Intra-
Bob local CGI tester: a pop-up ex-
ception message on a Web Server
would not be seen by anyone (ex-
cept the web master if he happens
to be near) and would have the
same effect as hanging the Web
Application... Not the best way to
keep your web space provider
happy!

So, what did we do wrong? Well,
it turns out that there are two ways
to execute a WinCGI application.
One is by only specifying the inifile
as a command-line argument to the
web application and trust the web
application to read the inifile and
obtain the “form literal” data and
“output file” specification from it.
This is the technique that IntraBob
uses. However, an earlier way for
WinCGI applications to execute is
by supplying not one but three
command line arguments: the sec-
ond containing the name of the file
containing the form data and the
third containing the filename to
write the output to. So, if we go to
the command line and call pro-
ject1.exe again, but this time with
project1.ini as the first argument,
any (or a non-existing) file as the
second argument and output.htm
as the third argument, things
should work again. Well, close but
no cigar, yet. We still get the same
exception: cannot open file. Surely,
it can’t be the input file (it doesn’t
even need to read the input). But it
turns out to be the output file that
must already exist (so our web ap-
plication only has to overwrite it).
So, if we create an empty file out-
put.htm, and call project1.exe pro-
ject1.ini nul output.htm then
things work fine and we indeed get

the HTML result in output.htm that
we would expect.

The fact that this is indeed a bug
can be found in the TWinCGIRe-
quest.Create constructor, which is
defined (in CGIApp.pas) as shown
in Listing 3.

We see that if the ContentFile
and OutputFile are not specified on
the command line they are ob-
tained from the inifile. But we also
see that the FServerData Output-
File is opened using the fmOpen-
Write or fmShareDenyNone flags.
Which means that if the output file
doesn’t exist it won’t be created!
This is usually a problem the first
time we run the WinCGI applica-
tion on a new web server (unless
the output file is removed after
each request). The fix is to change
the fmOpenWrite to the fmCreate flag
(on lines 410 and 507 in
CGIApp.pas). The fmCreate will
open the file in fmOpenWritemode if
it already exists, or just create it
for writing if it doesn’t.

Note that O’Reilley WebSite 2.0
works exactly as IntraBob and will
show the exception (because the
output file is not created), while
Microsoft IIS and PWS create the
output file in the temp directory
beforehand, so they give no
problem.

Hmmm, a lot of trial and error to
get even a minimal WinCGI app up
and running. But that’s usually the
biggest problem: getting started.

TPageProducer
So far, we only wrote one real line
of code, to assign a dynamic HTML
string to Response.Content in the
WebModule1WebActionItem1Action
event handler. However, instead of
writing our own HTML code from
scratch here, we can use a more
RAD approach, by dropping a
TPageProducer component into the

constructor TWinCGIRequest.Create(IniFileName, ContentFile, OutputFile: string);
begin
FIniFile := TIniFile.Create(IniFileName);
if ContentFile = ‘’ then
ContentFile := FIniFile.ReadString(‘System’, ‘Content File’, ‘’);

if OutputFile = ‘’ then
OutputFile := FIniFile.ReadString(‘System’, ‘Output File’, ‘’);

FClientData := TFileStream.Create(ContentFile, fmOpenRead or fmShareDenyNone);
FServerData := TFileStream.Create(OutputFile, fmOpenWrite or fmShareDenyNone);
inherited Create;

end;

➤ Listing 3



14 The Delphi Magazine Issue 24

web module and use it to produce a
set of HTML commands (optionally
based on an input template).

We should also change the Web-
Module1WebActionItem1Action event
handler as shown in Listing 4.

The TPageProducer has two help-
ful properties to either store or di-
rect to a HTML template file. The
HTMLDoc property contains a
StringList that stores the HTML
template directly in the compo-
nent itself, while the HTMLFileprop-
erty contains a filename to the
HTML template. This HTML tem-
plate is used by the PageProducer to
generate the Content string that is
assigned to the Response.Content
string (and returned from the web
server application).

So, we can now click on the Page-
Producer component on the web
module, click the HTMLDoc property
in the Object Inspector and enter
the contents of the HTML template
in the string list editor (Figure 4).
Too bad it doesn’t do HTML syntax
highlighting yet, but it wouldn’t be
hard to write a dedicated property
editor for the HTMLDoc TStrings
property of the TPageProducer
component.

Each string is a sequence of one
or more HTML commands or
HTML-transparent tags. An HTML-
transparent tag has the form:

<#TagName Param1=Value1
Param2=Value2 ...>

The <#TagName may not contain any
spaces. The TagName identifies the
HTML tag for the PageProducer,
which converts the entire tag into a
more meaningful HTML content
based on the value of the tagname
and the optional parameter values.
This is a transparent tag, since nor-
mal HTML browsers don’t recog-
nise the #TagName construct and
hence won’t show anything.

The Content method converts
HTMLDoc into a final HTML string by
calling the HandleTag method to
convert each HTML-transparent
tag in HTMLDoc. So, after we’ve filled
the HTMLDoc property, we should go
to the events page of the Object In-
spector to create an OnHTMLTag
event handler for the PageProducer.
Assuming there are more possible

TagNames defined, we should check
the TagString argument and for
each specific TagName replace it
with the required HTML. In this
case, we want to replace the <#TAG>
tag, which means we must look for
a TagString with the name TAG. The
optional Tag Parameters can be
found in the TagParams argument.
The initial TagString in combina-
tion with the TagParams can be used
to define a wide range of tag values
to replace.

We can replace the Tag with any
content we want and return that
content in the ReplaceText string.
See Listing 5.

If we test the WinCGI project
we’ve written so far in IntraBob
again, we get the expected result
as shown in Figure 5.

The HTMLDoc property in combi-
nation with the transparent Tags
and the PageProducer1HTMLTag
event handler gives us enough
power to write a meaningful CGI,
WinCGI or ISAPI/NSAPI web appli-
cation. However, there’s more.
Much more...

Actions
For starters, we can put more than
one action into a CGI web applica-
tion. We can put a dynamic HTML

➤ Figure 5

➤ Figure 4

procedure TWebModule1.PageProducer1HTMLTag(Sender: TObject; Tag: TTag;
const TagString: String; TagParams: TStrings; var ReplaceText: String);

begin
if TagString = ‘TAG’ then
ReplaceText := ‘Welcome to Dr.Bob’’s Delphi Clinic’

else
ReplaceText := ‘Error: Unknown tag offered...’

end;

➤ Listing 5

procedure TWebModule1.WebModule1WebActionItem1Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := PageProducer1.Content;

end;

➤ Listing 4



August 1997 The Delphi Magazine 15

form in the main form and let it call
another action. This can be done
as follows, for example:

<FORM ACTION="project1.exe/table"
METHOD="post">

Now, the ACTION doesn’t consist of
project1.exe anymore, but has a
special action URL added to it: /ta-
ble. The reason that this works is
that the Web Server is able to parse
a URI (Uniform Resource Identi-
fier) into subparts. For example:

http://www.drbob42.com/cgi-bin/
project1.exe/table?Name=DrBob

is parsed into the following parts:

protocol: http
host: www.drbob42.com
ScriptName: /cgi-bin/project1.exe
PathInfo: /table
Query: ?Name=DrBob

as environment variables (for stan-
dard CGI applications) or in the INI
file for WinCGI applications.

Now that we have a second Web-
ActionItem, it’s also time to look at
some alternatives to the plain
HTML TPageProducer component:
the TDataSetTableProducer and
TQueryTableProducer components.

TDataSetTableProducer
Usually, we don’t want to put a sim-
ple HTML page on the web, but
rather the contents of a database
or the result of a dynamic query. In
that case, we can use the more so-
phisticated TDataSetTableProducer
and TQueryTableProducer (the Ta-
ble part of their names refers to
HTML table output, not to data-
base tables). These two compo-
nents can be used to produce nice
looking HTML pages, consisting of
records formatted in HTML-tables
that look like DBGrids in the web
browser.

In order to use the DataSetTable-
Producer1 we must first connect to
it from our second WebActionItem.
This is done as shown in Listing 6.

The DataSetTableProducer must
be connected to a DataSource,
which means it’s now also time to
drop a Table (or Query) on the web
module. Note that we don’t need a
connecting DataSource (which is
only needed to connect visual
data-aware controls to datasets).
For this to work, the BDE must be
installed on the Web Server, of
course, including the demo data-
bases and aliases.

For this example, we can drop a
TTable on the web module, set the
DatabaseName property of the TTa-
ble to DBDEMOS, the TableName prop-
erty to BIOLIFE.DB and set the
DataSetproperty of TDataSetTable-
Producer to Table1 so we’re ready
to run.

In order to specify which col-
umns are to be used in the DataSet-
TableProducer we need to set the
Active property of the TTable com-
ponent to True. Right after that,
click the Columns property (type
THTMLTableColumns) of the DataSet-
TableProducer component and we
end up in a new property editor in
which we can design the output
the way we want it (Figure 7).

To define a new action for our web
module, we need to click the web
module Actions property again. In
the Editing WebModule1.Actions
dialog, click Add to get a WebAc-
tionItem2. Now, we need to set the
Enabled property of the first action
to False (since we have two WebAc-
tions and we only want to test the
latest one) and we can specify the
PathInfo of the second WebAc-
tionItem, for example as /table
(Figure 6).

Note that I actually had to dis-
able the first WebActionItem be-
cause IntraBob wasn’t able to split
the command-line into a URL,
Query String, Logical Path and
Physical Path. Hence, the PathInfo
inside the WinCGI application was
never set and the WebActionItem1
was always fired from IntraBob
(I’m working on supporting that as
well). A real Web Server will be able
to provide this information, either

➤ Figure 7

➤ Figure 6

procedure TWebModule1.WebModule1WebActionItem2Action(Sender: TObject;
Request: TWebRequest; Response: TWebResponse; var Handled: Boolean);

begin
Response.Content := DataSetTableProducer1.Content;

end;

➤ Listing 6



16 The Delphi Magazine Issue 24

Most properties (like Align and
BgColor) seem to work on the entire
table instead of individual col-
umns, at least at design time in the
property editor, which is a pity).
Actually, it turns out that if we want
to specify formatting options for in-
dividual fields, we can click on any
of these fields in the property edi-
tor, go back to the Object Inspec-
tor, and change them there (a bit
unnatural: why can’t we do it in the
property editor?).

Anyway, after we close this prop-
erty editor, we’re ready to test the
output of the TDataSetTablePro-
ducer (Figure 8).

Of course, this will look even bet-
ter in a real web browser (rather
than the NetManage HTML control
that is the basis for IntraBob), and
the colours used are probably not
ergonomic, but you should have
the idea by now. There are a lot
more properties and events left un-
explored at this time (such as the
Caption, Header, Footer, RowAttrib-
utes and TableAttributes proper-
ties of the TDataSetTableProducer,
and the TQueryTableProducer that I
haven’t covered at all). But I have
to leave something for next time,
right?

We’ve seen that Delphi 3 web
modules offer a framework for CGI,
WinCGI and ISAPI/NSAPI web appli-
cations that support multiple
actions. The WebModule and WebDis-
patcher are responsible for dis-
patching the actions, while the
PageProducer, DataSetTableProd-

ucer and QueryTableProducer can be
used, with Tags and replacement
contents, to create customisable
dynamic HTML pages.

Next Time...
Next month, we’ll use the informa-
tion from this month’s column to
write a more complex CGI, WinCGI
and ISAPI/NSAPI application (actu-
ally only one, but we’ll see how to

switch quickly from one protocol
to another) that supports multiple
states, tables, queries and more
goodies.

Only for Delphi 3 Client/Server
users, unfortunately, so I’m also
working with Shoreline’s Chad Z
Hower on an article about Port-
cullis, the Internet Application
Gateway from ShoreLine, showing
how to write components compati-
ble with IAG.

Bob Swart (aka Dr.Bob, visit
www.drbob42.com) is a profes-
sional knowledge engineer
technical consultant using Delphi
and C++Builder, freelance techni-
cal author and co-author of The
Revolutionary Guide to Delphi 2.
Bob is now co-working on Delphi
Internet Solutions, a new book
about Delphi and the internet/
intranet. In his spare time, Bob
likes to watch videos of Star Trek
Voyager and Deep Space Nine
with his 3 year old son Erik Mark
Pascal and his 8 month old daugh-
ter Natasha Louise Delphine.

➤ Figure 8


	WinCGI
	TWebDispatcher
	IntraBob v2.0
	TPageProducer
	Actions
	TDataSetTableProducer
	Next Time...

